

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH11) Paper 01 Structure, Bonding and Introduction to Organic Chemistry

Section A

Question Number	Answer	Mark
1	The only correct answer is C (1.88×10^{24})	(1)
	 A is not correct because this must be multiplied by 5 B is not correct because mole calculation inverted and not multiplied by 5 D is not correct because mole calculation inverted 	Computer

Question Number	Answer	Mark
2	The only correct answer is A (6.0 cm ³)	(1)
	 B is not correct because this is double the volume of butane required C is not correct because this is the volume of CO₂ released D is not correct because this is the total volume of reacting gases 	Computer

Question Number	Answer	Mark
3(a)	The only correct answer is B (C ₁₀ H ₁₆)	(1)
	A is not correct because there are 6 too few hydrogen atoms C is not correct because there are 2 extra hydrogen atoms D is not correct because there are 6 extra hydrogen atoms	Computer

Question Number	Answer	Mark
3(b)	The only correct answer is D (CH ₂)	(1)
	A is not correct because the wrong formula of limonene was used B is not correct because this is the empirical formula of $C_{10}H_{18}$ C is not correct because this is the empirical formula of $C_{10}H_{16}$	Computer

Question Number	Answer	Mark
4	The only correct answer is B (a compound containing of carbon and hydrogen only)	(1)
	A is not correct because hydrocarbons do not contain oxygen C is not correct because not all hydrocarbons have only single carbon to carbon bonds D is not correct because it does not suggest that the hydrogen and carbon atoms are bonded together	Computer

Question Number	Answer	Mark
5(a)	The only correct answer is D (51.1%)	(1)
	A is not correct because they have worked out the atom economy for 1 mol of carbon dioxide B is not correct because only allowed for 1 mol of ethanol C is not correct because they have worked out the atom economy for 2 mol of carbon dioxide	Computer

Question Number	Answer	Mark
5(b)	The only correct answer is D (100%)	(1)
	A is not correct because this is the atom economy based on 1 mol of water and ethanol B is not correct because this is the atom economy based on ethene and ethanol C is not correct because this is the atom economy based on 2 mol of water and ethanol	Computer

Question Number	Answer	Mark
6(a)	The only correct answer is D ([Ar] 4s ²)	(1)
	A is not correct because this is the electronic configuration for sodium B is not correct because this is the electronic configuration for potassium C is not correct because this is the electronic configuration for magnesium	Computer

Question Number	Answer	Mark
6(b)	The only correct answer is B ([Ar]3d ³)	(1)
	A is not correct because the 3 electrons have been removed from the 3d orbitals C is not correct because this is the electronic configuration for Cr^{2+} D is not correct because this is the electronic configuration for Cr^{+}	Computer

Question Number	Answer	Mark
7(a)	The only correct answer is D (120°)	(1)
	A is not correct because the answer is based on a square planar shape B is not correct because this is based on the shape for ammonia C is not correct because the answer is based on a tetrahedral shape	Computer

Question Number	Answer	Mark
7(b)	The only correct answer is D (109.5°)	(1)
	A is not correct because the answer is based on a square planar shape B is not correct because this is based on the shape for water C is not correct because this is based on the shape for ammonia	Computer

Question Number	Answer	Mark
7(c)	The only correct answer is B (104.5°)	(1)
	A is not correct because the answer is based on a square planar shape C is not correct because the answer is based on a tetrahedral shape D is not correct because the answer is based on a linear shape	Computer

Question Number	Answer	Mark
8	The only correct answer is A (chlorine)	(1)
	 B is not correct because the bromide ions are oxidised C is not correct because bromine is a product in the reaction with chlorine D is not correct because the iodide ions are oxidised 	Computer

Question Number	Answer	Mark
9	The only correct answer is C (polar liquid towards the rod and non-polar liquid no deflection)	(1)
	A is not correct because non-polar liquids are not deflected B is not correct because polar liquids are not deflected away from the rod D is not correct because non-polar liquids are not deflected	Computer

Question Number	Answer	Mark
10	The only correct answer is B $(Mg^+(g) \rightarrow Mg^{2+}(g) + e^-)$	
	$m{A}$ is not correct because Mg is the first and second ionisation energies combined $m{C}$ is not correct because Mg $^+$ is a solid $m{D}$ is not correct because this is the first ionisation energy for Mg	Computer

Question Number	Answer	Mark
11(a)	The only correct answer is A (Na ⁺ > Mg ²⁺ > Al ³⁺)	
	 B is not correct because the ions are in a random order C is not correct because the ions are in a random order D is not correct because the ions are in reverse order 	Computer

Question Number	Answer	Mark
11(b)	The only correct answer is A $(F^- < O^{2-} < N^{3-})$	(1)
	 B is not correct because the ions are in a random order C is not correct because the ions are in a random order D is not correct because the ions are in reverse order 	Computer

Question Number	Answer	Mark
12	The only correct answer is C (Ba(OH) ₂₍ aq) and HCl(aq))	
	A is not correct as $AgCl(s)$ is formed B is not correct as $CaCO_3(s)$ is formed D is not correct as $PbI_2(s)$ is formed	Computer

Question Number	Answer	Mark
13	The only correct answer is C (green solution and effervescence)	
	 A is not correct because the solution is not colourless and effervescence is not included B is not correct because a colourless solution is not formed D is not correct because effervescence is not included 	Computer

Question Number	Answer	Mark
14	The only correct answer is C (H ⁺ (aq) + OH ⁻ (aq) \rightarrow H ₂ O(l))	
	 A is not correct because it does not show the lowest whole numbers ratio B is not correct because it shows water as aqueous D is not correct because it shows an oxide ion instead of a hydroxide ion 	Computer

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Answer		Additional Guidance	Mark
15(a)	, i	(1)	2AgCl(s) → 2Ag(s) + Cl ₂ (g) M2 dependent on M1 or near miss e.g. AgCl ₂ or correct formulae but unbalanced equation	(2)

Number	Answer		Additional Guidance	Mark
15(b)(i)	An answer that makes reference to the following points:	(1)	Do not award just solution changes colour Accept silver / Ag (layer on the copper) Allow silver / grey / black precipitate Ignore white Ignore powder or solid disappears, temperature change	(2)
Question Number	Answer	1	Additional Guidance	Mark
15(b)(ii)	An answer that makes reference to the following points:	(1) (1)	$Cu(s) + 2AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2Ag(s)$ Allow correct ionic equation. $Cu(s) + 2Ag^+(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$	(2)

Question Number	Answer		Additional Guidance	Mark
	An answer that makes reference to the following points: • At least 12 silver ions arranged in layers with positive charge and at least 10 electrons (e ⁻ or e or -), some within the structure. • electrostatic (force of) attraction • between positive metal ions / cations and sea of / delocalised electrons	(1) (1) (1)	Mention of shared electrons or incorrect bonding negates 1 mark H H H H H H Allow silver ions touching Allow not close packed layers Do not award positively charged nucleus	Mark (3)

Question Number	Answer		Additional Guidance	Mark
15(c)(ii)	An explanation that makes reference to the following points:			(2)
	• the layers / ions / atoms slide less well (over each other)	(1)	Do not award layers can not slide (over each other)	
	because copper ions / atoms are smaller than silver ions / atoms	(1)	Allow copper ions and silver ions have different sizes Do not award just copper is smaller than silver	
			Ignore comments about strength of metallic bonds or just copper ions disrupting the lattice	

(Total for Question 15 = 11 marks)

Question Number	Answer		Additional Guidance	Mark
16 (a) (i)	An answer that makes reference to the following points:		Allow refer to mole instead of atom in M1 and M2	(2)
	 the (weighted) average/mean mass of atom(s) relative to 1/12th (the mass) of one atom of carbon-12 	(1)(1)		

Question Number	Answer		Additional Guidance	Mark
16(a) (ii)	 expression evaluation and answer to 3 SF 	(1) (1)	Example of calculation: $(28 \times 91.07) + (29 \times 4.62) + (30 \times 3.00) + (32 \times 1.31)$ (100) $= 28.1586$ $= 28.2 (3SF)$ Allow TE on minor slip if final answer 28 - 32 Correct answer scores 2 Allow g mol ⁻¹ / g/mol, Do not award any other units for M2	(2)

Question Number	Answer		Additional Guidance	Mark
16(a) (iii)	An answer that makes reference to the following point: • 28Si ²⁺ (1	1)	Allow ²⁸ Si ⁺² Ignore state symbols	(1)

Question Number	Answer		Additional Guidance	Mark
16(b)(i)	An explanation that makes reference to the following points:			(3)
	• (first ionisation energy) increases (for these elements)	(1)		
	because the electrons are removed from the same sub-shell	(1)	Accept 3p (sub-shell) Allow have the same shielding Ignore same shell / same orbital	
	 and the number of protons has increased (by 1 for each element) 	(1)	Accept increased nuclear charge	

Question Number	Answer		Additional Guidance	Mark
16(b)(ii)	An explanation that makes reference to the following points:			(2)
	• sulfur has 4 electrons in the 3p sub-shell	(1)	Allow shown on a diagram	
	and			
	one 3p orbital is (doubly) filled / has a pair of electrons			
	• so there is a (slight) repulsion between the electrons in the same 3p orbital (resulting in a lower first ionisation energy)	(1)	Ignore shielding	

(Total for Question 16 = 10 marks)

Question Number	Answer		Additional Guidance	Mark
17 (a)	An answer that makes reference to the following points:			(2)
	4 pairs of electrons around central carbon atom	(1)		
	3 more pairs of electrons around each of the 4 outer carbons	(1)	C C C C	
			Accept all dot, all crosses in any combination	
			Accept the diagram with no circles	
			Allow the electrons not to be paired	

Question Number	Answer		Additional Guidance	Mark
17(b)	 An answer that makes reference to the following points: at least two layers of hexagons (with or without Cs) (containing at least 3 hexagons per layer) labelled (electrostatic) forces of attraction between the layers 	(1)	Forces of attraction between layers Ignore delocalised electrons Allow any form of intermolecular forces	(2)

Question Number	Answer	Additional Guidance	Mark	
17(c)	An answer that makes reference to the following points:		Mention of molecules negates one mark	(2)
	• in diamond all the carbons are bonded to each other, (with no gaps). (1)		Allow each C bonded to 4 other C atoms, or tetrahedral lattice	
	• in graphite there are layers that are further apart than the carbon to carbon bonds in diamond		Allow there is empty space / large distance between the layers in graphite Do not award air is trapped between the layers	

(Total for Question 17 = 6 marks)

Question Number	Answer	Additional Guidance	Mark
18(a) (i)	An answer that makes reference to the following point:		(1)
	• thermal decomposition (of sodium hydrogencarbonate)	Do not award just decomposition	

Question Number	Answer	Additional Guidance	Mark
18(a)(ii)	An answer that makes reference to the following point:		(1)
	the reactants are dry	Allow the idea that water is needed Allow reverse argument Do not award just solution	

Question Number	Answer			Additional Guidance					Mark
18(b) (i)				Example of c	alculation:				(2)
	• calculate % oxygen		(1)	100 – (20.8 +	25.5 + 2.66)	= 51.04			
	and mol / mol fraction of K, C, H and O			K 20.8 ÷ 39.1 0.532	C 25.5 ÷ 12	H 2.66 ÷ 1 2.66	O 51.04 ÷ 16		
	(calculate smallest whole number ratio and) give the empirical formula		(1)	0.532 ÷ 0.532 1 KC4H ₅ O ₆ ; Ele Correct answellignore SF excellent	2.13 ÷ 0.532 4 ements in any er with some vecept 1 SF	2.66 ÷ 0.532 5 order working scor	3.19 ÷ 0.532 6		
Question Number	Answer				to M2 or KC4		ed)	Mai	·k
18(b) (ii)	An answer that makes reference to the following points:		H^+	X^+A^{2-} + NaH	$ICO_3 \rightarrow Na$	$A^{+}K^{+}A^{2-} + I$	$H_2O + CO_2$	(2))
Clip with (b)(iii) and (b)(iv)	 correct formulae of reactants correct formulae of products 	(1)(1)	Allo Aco	Allow multiples Allow formulae with atoms in any order Accept formulae fully without charges Unbalanced equations scores max 1					

Question Number	Answer		Additional Guidance	Mark
18(b) (iii) Clip with (b)(ii) and (b)(iv)	 calculate mass of NaHCO₃ 	(1)	Penalise the same conversion error only once in 18 (b) (iii) and (iv) Example of calculation: 5 × 0.3 = 1.5 (g)	(5)
	 moles of NaHCO₃ and hence moles CO₂ using stoichiometry from (b) (i) 	(1)	$1.5 \div 84 = 0.017857 \text{ (mol)}$ TE on formula of sodium hydrogen carbonate in (b)(ii)	
	• ${}^{O}C$ to K and substitution into $pV = nRT$	(1)	$190 + 273 = 463$ and $v = \frac{0.017857 \times 8.31 \times 463}{101000}$	
	evaluation	(1)	$190 + 273 = 463$ and $v = 0.017857 \times R \times 463$ 101000 6.80256×10^{-4} or 8.18593×10^{-5} R ignore units R could be any value except 0	
	• volume converted to cm ³	(1)	$V = 680 \text{ (cm}^3\text{) or } 81.9R$ Correct answers with working scores 5	

Question Number	Answer		Additional Guidance	Mark
18(b) (iv)			Example of calculation:	(2)
Clip with (b)(ii) and (b)(iii)	• use of $pV = nRT$ and evaluation and conversion to cm ³	(1)	$V = 293 \times 8.31 \times 0.017857 \div 101000$ $= 4.3 \times 10^{-4} \text{ (m}^3\text{)} \text{ (= 430 cm}^3\text{)}$ TE on incorrect mole calculation for (b)(iii), could be just a value for V Or without use of pV = nRT as V is proportional to temp. $680 \times 293/(273+190) = 430 \text{ (cm}^3\text{)}$	
	• calculation of volume reduction	(1)	680 – 430 = 250 (cm ³) or 2.50 ×10 ⁻⁴ m ³ Ignore SF except 1 SF TE on volume in (b)(iii) provided it is a positive value TE for M2 based on value obtained in M1	

(Total for Question 18 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
19(a)	An answer that makes reference to the following point:		(1)
	• presence of (at least one) carbon to carbon double bond / C = C	Allow $C \equiv C$ bond Ignore just having a double bond Ignore Hydrocarbon	

Question Number	Answer		Additional Guidance	Mark
19(b) (i)	An answer that makes reference to the following point:			(1)
	• addition (reaction)	(1)	Ignore electrophilic, bromination, hydration, halogenation	
			Do not award nucleophilic, substitution	

Question Number	Answer		Additional Guidance	Mark
19(b)(ii)	An answer that makes reference to the following points:			(3)
Clip with (b)(iii) and	• x-axis labelled (average) number of C=C (bonds per molecule)	(1)	(10	
(b)(iv)	and		100	
	y-axis labelled volume (of 0.0625 mol dm ⁻³ bromine water) / cm ³	7	50 To	
	• 4 points in the table plotted correctly to within half a small square	(1)	S 20 20 60 -	
	and	4	67.0 W	
	plots to cover ½ the grid in both directions with linear scales		o (p)	
	• straight line of best fit (through all 4 points)	(1)	No.	
			Average number of c=c bondo per molecule	
		I	Ignore extrapolation of straight line	
Question	Answer		Additional Guidance	Mark

Number			
19(b) (iii)		Example of calculation:	(1)
Clip with (b)(ii) and (b)(iv)	• calculation of the mean to 3SF	$\frac{36.9 + 34.1 + 39.3 + 32.5}{4} = 35.7 \text{ (cm}^3\text{)}$	

Question Number	Answer	Additional Guidance	Mark
19(b) (iv) Clip with (b)(ii) and (b)(iii)	 average number of C=C bonds derived from their graph and given to 2SF 	Average number of C=C bonds per molecule 1.25 =1.2 or 1.3 Allow TE from an incorrect line of best fit	(1)

Question Number	Answer	Additional Guidance	Mark
19(c) (i)	 An answer that makes reference to the following points: dipole on Br-Br arrow from double bond to delta + bromine arrow from bromine bond to delta - bromine carbocation on correct intermediate lone pair on bromide negative charge on bromide ion arrow from lone pair on bromide ion to carbocation correct formula of final product (1,2-dibromoethane) all 8 points 4 marks, 6 or 7 points 3 marks, 4 or 5 points 2 marks, 2 or 3 points 1 mark 	Point 1 if H-Br used penalise here only Point 4 carbocation intermediate based on any alkene Point 7 given for the arrow from lone pair if given, or anywhere if lone pair not given.	(4)

Question Number	Answer	Additional Guidance	Mark
19(c) (ii)	An answer that makes reference to the following point:		(1)
	(E- / trans-) 4-methylhex-2-ene	Do not award hexa	

Question Number	Answer		Additional Guidance	Mark
19(d)	An answer that makes reference to the following points:			(2)
	correct skeletal formula	(1)		
	• trans means that the (alkyl) groups (methyl or R) are on either side of the double bond	(1)	Allow (alkyl) groups point in opposite directions M2 is dependent on the presence of a double bond in M1 or text of M2	
			Ignore planes as this does not differentiate sufficiently between cis and trans Do not award species or molecules instead of groups	

(Total for Question 19 = 14 marks)

Question Number	Answer	Additional Guidance	Mark
20(a)	An answer that makes reference to the following points:		(2)
	• displayed formula of chloroethene (1)	H C Cl	
	• displayed formula of tetrafluoroethene (1)	c = c F	
		Max 1 for non-displayed formulae or both structures correct but both only missing the double bond Ignore "n" before or after monomer structure Ignore polymer structures	

Question Number	Answer		Additional Guidance	Mark
20(b)	An answer that makes reference to the following points:		Penalise incorrect chemistry once only	(4)
	incineration advantages			
	reduced volume of landfillor	(1)	Allow less land needed Ignore volume of waste, no landfill	
	energy released for generating electricity		Allow heating homes Ignore just useful energy NB a use must be given	
	incineration disadvantage	(1)		
	• produces toxins		Allow forms carbon dioxide / greenhouse gas Ignore just causes pollution and incorrect toxins	
	recycling advantage	(1)		
	saves (precious) resources		Allow reduces land fill if not already awarded Allow less waste of resources	
	recycling disadvantage	(1)		
	 polymers need to be sorted (and this is expensive) or 		Ignore just expensive	
	• involves the use of energy (to make the new product)		Ignore comments about transportation	

(Total for Question 20 = 6 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS